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PROGRAMMING SCHEMES FOR
MULTI-LEVEL ANALOG MEMORY CELLS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/566,372, filed Aug. 3, 2012, which is a
divisional of U.S. patent application Ser. No. 12/186,867,
filed Aug. 6, 2008, which claims the benefit of U.S. Provi-
sional Patent Application 60/954,169, filed Aug. 6, 2007,
U.S. Provisional Patent Application 60/954,317, filed Aug.
7, 2007, U.S. Provisional Patent Application 60/970,058,
filed Sep. 5, 2007 and U.S. Provisional Patent Application
60/985,236, filed Nov. 4, 2007, whose disclosures are incor-
porated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to memory
devices, and particularly to methods and systems for pro-
gramming multi-level analog memory cells.

BACKGROUND OF THE INVENTION

Several types of memory devices, such as Flash memo-
ries, use arrays of analog memory cells for storing data. Each
analog memory cell stores a quantity of an analog value, also
referred to as a storage value, such as an electrical charge or
voltage. The storage value represents the information stored
in the cell. In Flash memories, for example, each analog
memory cell holds a certain amount of electrical charge. The
range of possible analog values is typically divided into
regions, each region corresponding to one or more data bit
values. Data is written to an analog memory cell by writing
a nominal analog value that corresponds to the desired bit or
bits.

Some memory devices, which are commonly referred to
as Single-Level Cell (SLC) devices, store a single bit of
information in each memory cell, i.e., each memory cell can
be programmed to assume two possible memory states.
Higher-density devices, often referred to as Multi-Level Cell
(MLC) devices, store two or more bits per memory cell, i.e.,
can be programmed to assume more than two possible
memory states.

Flash memory devices are described, for example, by Bez
etal., in “Introduction to Flash Memory,” Proceedings of the
IEEE, volume 91, number 4, April, 2003, pages 489-502,
which is incorporated herein by reference. Multi-level Flash
cells and devices are described, for example, by Eitan et al.,
in “Multilevel Flash Cells and their Trade-Offs,” Proceed-
ings of the 1996 IEEE International Electron Devices Meet-
ing (IEDM), New York, N.Y., pages 169-172, which is
incorporated herein by reference. The paper compares sev-
eral kinds of multilevel Flash cells, such as common ground,
DINOR, AND, NOR and NAND cells.

Eitan et al., describe another type of analog memory cell
called Nitride Read Only Memory (NROM) in “Can
NROM, a 2-bit, Trapping Storage NVM Cell, Give a Real
Challenge to Floating Gate Cells?” Proceedings of the 1999
International Conference on Solid State Devices and Mate-
rials (SSDM), Tokyo, Japan, Sep. 21-24, 1999, pages 522-
524, which is incorporated herein by reference. NROM cells
are also described by Maayan et al., in “A 512 Mb NROM
Flash Data Storage Memory with 8 MB/s Data Rate”,
Proceedings of the 2002 IEEE International Solid-State
Circuits Conference (ISSCC 2002), San Francisco, Calif.,
Feb. 3-7, 2002, pages 100-101, which is incorporated herein
by reference. Other exemplary types of analog memory cells
are Floating Gate (FG) cells, Ferroelectric RAM (FRAM)
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cells, magnetic RAM (MRAM) cells, Charge Trap Flash
(CTF) and phase change RAM (PRAM, also referred to as
Phase Change Memory-PCM) cells. FRAM, MRAM and
PRAM cells are described, for example, by Kim and Koh in
“Future Memory Technology including Emerging New
Memories,” Proceedings of the 24.sup.th International Con-
ference on Microelectronics (MIEL), Nis, Serbia and Mon-
tenegro, May 16-19, 2004, volume 1, pages 377-384, which
is incorporated herein by reference.

Analog memory cells are often programmed using an
iterative programming process that is commonly known as
Program and verify (P&V). In a typical P&V process, a
sequence of programming pulses is applied to a group of
memory cells. The level of the programming pulses
increases incrementally from pulse to pulse. The analog
values programmed in the cells are read (“verified”) after
each pulse, and the iterations continue until the desired
levels are reached.

Some programming processes vary the parameters of the
P&V process during programming. For example, U.S. Pat.
No. 7,002,843, whose disclosure is incorporated herein by
reference, describes a non-volatile memory device that is
programmed by first performing a coarse programming
process and subsequently performing a fine programming
process. The coarse/fine programming methodology is
enhanced by using an efficient verification scheme that
allows some non-volatile memory cells to be verified for the
coarse programming process while other non-volatile
memory cells are verified for the fine programming process.

As another example, U.S. Pat. No. 7,054,193, whose
disclosure is incorporated herein by reference, describes
write operations that simultaneously program multiple
memory cells on the same word line in a Multi Bit Per Cell
(MBPC) Flash memory. The write operations employ word
line voltage variation, programming pulse width variation
and data-dependent bit line and/or source line biasing to
achieve uniform programming accuracy across a range of
target threshold voltages.

U.S. Pat. No. 7,349,263, whose disclosure is incorporated
herein by reference, describes nonvolatile memory devices,
which support P&V operations that improve the threshold
voltage distribution within programmed memory cells. The
improvement is achieved by reducing a magnitude of the
programming voltage steps and increasing a duration of the
verify operations once at least one of the plurality of
memory cells undergoing programming has been verified as
a “passed” memory cell.

SUMMARY OF THE INVENTION

An embodiment of the present invention provides a
method for data storage, including:

storing first data bits in a set of multi-bit analog memory
cells at a first time by programming the memory cells to
assume respective first programming levels;

storing second data bits in the set of memory cells at a
second time that is later than the first time by programming
the memory cells to assume respective second programming
levels that depend on the first programming levels and on the
second data bits; and

selecting a storage strategy responsively to a difference
between the first and second times, wherein the storage
strategy is applied to at least one group of the data bits,
selected from among the first data bits and the second data
bits.

In some embodiments, selecting the storage strategy is
performed at the first time following storage of the first data
bits. In an embodiment, selecting the storage strategy
includes drawing an inference with respect to the time
difference based on a status of the memory cells following
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the storage of the first data bits. Drawing the inference may
include detecting that the set of the memory cells is partially-
programmed following the storage of the first data bits. In
another embodiment, selecting the storage strategy is per-
formed at the second time.

In some embodiments, the method includes reading from
the memory cells at least one set of the stored data bits,
selected from among the first data bits and the second data
bits, wherein the storage strategy is applied in reading the at
least one set of data bits. In an embodiment, selecting the
storage strategy includes determining read thresholds to be
used in reading the at least one set of data bits. In another
embodiment, selecting the storage strategy includes select-
ing a decoding process for reading the at least one set of data
bits.

In yet another embodiment, selecting the storage strategy
includes modifying a programming parameter used in stor-
ing the at least one group of the data bits. In still another
embodiment, storing the first and second data bits includes
applying to the memory cells a sequence of programming
pulses that incrementally increase by a step size, and select-
ing the storage strategy includes modifying the step size. In
a disclosed embodiment, storing the first and second data
bits includes encoding the at least one group of the data bits
with an Error Correction Code (ECC), and selecting the
storage strategy includes modifying a redundancy level of
the ECC.

In an embodiment, programming the memory cells to
assume the first and second programming levels includes
writing to the cells predefined storage values that correspond
to the respective programming levels and are separated from
one another by predefined separations, and selecting the
storage strategy includes modifying a separation between at
least two programming levels selected from among the first
and second programming levels. In another embodiment,
selecting the storage strategy includes measuring the differ-
ence between the first and second times and comparing the
measured difference to a threshold.

In yet another embodiment, storing the second data bits
includes retrieving the stored first data bits from the memory
cells, caching the retrieved first data bits in a buffer and
computing the second programming levels based on the
cached first data bits and the second data bits, and selecting
the storage strategy includes correcting errors in the cached
first data bits and re-writing the first data bits, after correc-
tion of the errors, to the buffer prior to computing the second
programming levels.

In some embodiments, storing the second data bits
includes retrieving the stored first data bits from the memory
cells, caching the retrieved first data bits in a buffer and
computing the second programming levels based on the
cached first data bits and the second data bits, and selecting
the storage strategy includes:

correcting errors in the cached first data bits to produce
error-corrected bits;

re-retrieving the first data bits from the memory cells after
storage of the second data bits; and

selecting the storage strategy responsively to a discrep-
ancy between the error-corrected bits and the re-retrieved
first data bits.

In a disclosed embodiment, selecting the storage strategy
includes:

retrieving at least part of the stored first data bits from the
memory cells using one or more read thresholds;

processing the retrieved first data bits so as to modify the
read thresholds;

re-retrieving the first data bits from the memory cells
using the modified read thresholds; and

computing the second programming levels responsively
to the second data bits and the re-retrieved first data bits.
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In an embodiment, processing the retrieved first data bits
includes detecting errors in the retrieved first data bits and
modifying the read thresholds responsively to the detected
errors.

There is additionally provided, in accordance with an
embodiment of the present invention, a method for data
storage, including:

storing first data bits in a memory device, which includes
a first set of multi-bit analog memory cells and a second set
of digital memory cells, by programming the analog
memory cells to assume respective first programming levels;

caching the first data bits in the digital memory cells;

accepting second data bits for storage in the first set of
analog memory cells;

processing the accepted second data bits and the cached
first data bits so as to compute respective second program-
ming levels for the analog memory cells; and

storing the second data bits in the first set of analog
memory cells by programming the analog memory cells to
assume the respective second programming levels.

In some embodiments, caching the first data bits includes
evaluating a criterion with respect to the first data bits, and
caching the first data bits only responsively to meeting the
criterion.

In an embodiment, when the first data bits are not cached
in the digital memory cells, the method includes retrieving
the first data bits from the analog memory cells, correcting
errors in the retrieved first data bits to produce error-
corrected bits, and computing the second programming
levels responsively to the second data bits and the error-
corrected bits. In a disclosed embodiment, correcting the
errors includes detecting the errors by error detection cir-
cuitry in the memory device and correcting the errors by
error correction circuitry external to the memory device
responsively to detecting the errors.

In another embodiment, storing the first data bits includes
applying to the analog memory cells a first sequence of
programming pulses that incrementally increase by a first
step size, and storing the second data bits includes applying
to the analog memory cells a second sequence of the
programming pulses that incrementally increase by a second
step size, smaller than the first step size.

There is also provided, in accordance with an embodi-
ment of the present invention, apparatus for data storage,
including:

programming circuitry, which is coupled to store first data
bits in a set of multi-bit analog memory cells at a first time
by programming the memory cells to assume respective first
programming levels, and to store second data bits in the set
of memory cells at a second time that is later than the first
time by programming the memory cells to assume respective
second programming levels that depend on the first pro-
gramming levels and on the second data bits; and

a processor, which is configured to select a storage
strategy responsively to a difference between the first and
second times, wherein the storage strategy is applied to at
least one group of the data bits, selected from among the first
data bits and the second data bits.

There is further provided, in accordance with an embodi-
ment of the present invention, a memory device, including:

a first set of multi-bit analog memory cells;

a second set of digital memory cells; and

control circuitry, which is coupled to store first data bits
in the first set of analog memory cells by programming the
analog memory cells to assume respective first programming
levels, to cache the first data bits in the digital memory cells,
to accept second data bits for storage in the first set of analog
memory cells, to process the accepted second data bits and
the cached first data bits so as to compute respective second
programming levels for the analog memory cells, and to
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store the second data bits in the first set of analog memory
cells by programming the analog memory cells to assume
the respective second programming levels.

In some embodiments, the memory device includes a
device package, and the analog memory cells, the digital
memory cells and the control circuitry are packaged in the
device package.

There is additionally provided, in accordance with an
embodiment of the present invention, apparatus for data
storage, including:

a memory including a set of multi-bit analog memory
cells;

programming circuitry, which is coupled to store first data
bits in the set of multi-bit analog memory cells at a first time
by programming the memory cells to assume respective first
programming levels, and to store second data bits in the set
of memory cells at a second time that is later than the first
time by programming the memory cells to assume respective
second programming levels that depend on the first pro-
gramming levels and on the second data bits; and

a processor, which is configured to select a storage
strategy responsively to a difference between the first and
second times, wherein the storage strategy is applied to at
least one group of the data bits, selected from among the first
data bits and the second data bits.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
memory system, in accordance with an embodiment of the
present invention;

FIG. 2 is a flow chart that schematically illustrates a
method for storing data in an array of multi-level memory
cells, in accordance with an embodiment of the present
invention;

FIG. 3 is a block diagram that schematically illustrates a
memory system, in accordance with an alternative embodi-
ment of the present invention;

FIG. 4 is a graph showing threshold voltage distributions
in a group of multi-level memory cells, in accordance with
an embodiment of the present invention; and

FIGS. 5 and 6 are flow charts that schematically illustrate
methods for storing data in an array of multi-level memory
cells, in accordance with embodiments of the present inven-
tion.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

In many multi-level analog device configurations, differ-
ent memory pages are stored in different, respective bits of
a group of memory cells. For example, a group of eight-level
cells may store three memory pages, one page mapped to
each bit of the cells. When programming a second or higher
page, the storage value to be written to a given cell depends
on the new bit to be written and on the previous program-
ming state of the cell (i.e., on bits from previous pages that
were written to the cell). Thus, in some conventional pro-
gramming schemes, a second or higher page is programmed
by (1) reading the storage values from the cells, (2) recon-
structing the data of the previously-written page or pages,
and (3) computing new programming levels for the cells
based on the data of the new page and on the reconstructed
data of the previous pages.

The process of reading and reconstructing the data of
previously-written pages inherently introduces some error
probability. When a reconstruction error occurs in a given
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cell, the new programming level computed for this cell when
programming the new page is likely to be erroneous, as well.
The probability of erroneous data reconstruction during
programming operations is particularly severe when a large
time gap exists between programming of the new page and
programming of the previous pages (since distortion in
analog memory cells typically increases over time). Such
scenarios are referred to herein as Discontinuous Program-
ming (DP) scenarios. Nevertheless, programming schemes
that rely on reconstruction of previously-written data inevi-
tably involve some error probability, regardless of the time
gap between the programming of different pages. Such
programming schemes are often designed to program the
cells with high accuracy and/or to leave large margins
between adjacent programming levels, in order to account
for potential reconstruction errors. These measures typically
reduce the programming speed and/or storage capacity of
the cells.

Embodiments of the present invention provide improved
methods and systems for storing data in arrays of multi-level
analog memory cells, such as MLLC Flash memory devices.
The methods and systems described herein efficiently miti-
gate errors that may occur during programming due to
reconstruction of previously-written pages.

In some embodiments that are described hereinbelow, a
Memory Signal Processor (MSP) stores data in a memory,
which comprises an array of multi-level (multi-bit) analog
memory cells. The MSP identifies DP scenarios, i.e., sce-
narios in which large time gaps separate the programming of
different pages to a given group of cells. When identifying
a DP scenario, the MSP selects an appropriate storage
strategy in order to compensate for the potentially-higher
error probability associated with the DP scenario. The MSP
may identify DP scenarios when programming early-arriv-
ing pages (i.e., before the potentially-large time gap), when
programming late-arriving pages (i.e., after the potentially-
large time gap), or even when reading the cells. Various
methods for detecting DP scenarios, as well as various
storage strategies that may be selected and applied in
response to detecting such scenarios, are described below.
By detecting and acting upon DP scenarios, the nominal
accuracy of programming the cells can be relaxed, and
programming speed can be increased accordingly.

In some embodiments, when programming an array of
multi-bit analog memory cells, data of some of the pro-
grammed pages is cached in digital memory (e.g., in page
buffers) for later use. When writing a second or higher page
to a group of cells, the new programming levels are com-
puted based on the cached data of previously-written pages,
without having to read the cells and reconstruct the data.
Computing the new programming levels based on cached
data enables programming the cells with reduced precision,
since there is no need to account for possible reconstruction
errors. As a result, programming speed can be increased
considerably.

System Description

FIG. 1 is a block diagram that schematically illustrates a
memory system 20, in accordance with an embodiment of
the present invention. System 20 can be used in various host
systems and devices, such as in computing devices, cellular
phones or other communication terminals, removable
memory modules (“disk-on-key” devices), Solid State Disks
(SSD), digital cameras, music and other media players
and/or any other system or device in which data is stored and
retrieved.

System 20 comprises a memory device 24, which stores
data in a memory cell array 28. The memory cell array
comprises multiple analog memory cells 32. In the context
of the present patent application and in the claims, the term
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“analog memory cell” is used to describe any memory cell
that holds a continuous, analog value of a physical param-
eter, such as an electrical voltage or charge. Array 32 may
comprise analog memory cells of any kind, such as, for
example, NAND, NOR and CTF Flash cells, PCM, NROM,
FRAM, MRAM and DRAM cells. Memory cells 32 com-
prise Multi-Level Cells (MLC, also referred to as multi-bit
cells), each storing multiple data bits.

The charge levels stored in the cells and/or the analog
voltages or currents written into and read out of the cells are
referred to herein collectively as analog values or storage
values. Although the embodiments described herein mainly
address threshold voltages, the methods and systems
described herein may be used with any other suitable kind of
storage values.

System 20 stores data in the analog memory cells by
programming the cells to assume respective memory states,
which are also referred to as programming levels. The
programming levels are selected from a finite set of possible
levels, and each level corresponds to a certain nominal
storage value. For example, a 2 bit/cell ML.C can be pro-
grammed to assume one of four possible programming
levels by writing one of four possible nominal storage values
to the cell.

Memory device 24 comprises a reading/writing (R/W)
unit 36, which converts data for storage in the memory
device to storage values and writes them into memory cells
32. In alternative embodiments, the R/W unit does not
perform the conversion, but is provided with voltage
samples, i.e., with the storage values for storage in the cells.
The R/W unit typically (although not necessarily) programs
the cells using an iterative Program and Verify (P&V)
process, as is known in the art. When reading data out of
array 28, R/W unit 36 converts the storage values of memory
cells 32 into digital samples having a resolution of one or
more bits. Data is typically written to and read from the
memory cells in groups that are referred to as pages.
Memory device 24 comprises one or more page buffers 38,
which are used for caching data pages during data storage
and retrieval.

The storage and retrieval of data in and out of memory
device 24 is performed by a Memory Signal Processor
(MSP) 40. MSP 40 comprises an interface 44 for commu-
nicating with memory device 24, and a signal processing
unit 48, which processes the data that is written into and read
from device 24. In some embodiments, unit 48 produces the
storage values for storing in the memory cells and provides
these values to R/W unit 36. Alternatively, unit 48 provides
the data for storage, and the conversion to storage values is
carried out by the R/W unit internally to the memory device.

In some embodiments, the data that is stored in device 24
is encoded with an Error Correction Code (ECC). For this
purpose, MSP 40 comprises an ECC encoding/decoding unit
52. Unit 52 encodes the data prior to its storage in the
memory cells, and decodes the encoded data retrieved from
the memory.

MSP 40 communicates with a host 56, for accepting data
for storage in the memory device and for outputting data
retrieved from the memory device. MSP 40, and in particular
unit 48, may be implemented in hardware. Alternatively,
MSP 40 may comprise a microprocessor that runs suitable
software, or a combination of hardware and software ele-
ments.

The configuration of FIG. 1 is an exemplary system
configuration, which is shown purely for the sake of con-
ceptual clarity. Any other suitable memory system configu-
ration can also be used. Elements that are not necessary for
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understanding the principles of the present invention, such
as various interfaces, addressing circuits, timing and
sequencing circuits and debugging circuits, have been omit-
ted from the figure for clarity.

In the exemplary system configuration shown in FIG. 1,
memory device 24 and MSP 40 are implemented as two
separate Integrated Circuits (ICs). In alternative embodi-
ments, however, the memory device and MSP may be
integrated on separate semiconductor dies in a single Multi-
Chip Package (MCP) or System on Chip (SoC). Further
alternatively, some or all of the MSP circuitry may reside on
the same die on which the memory array is disposed. Further
alternatively, some or all of the functionality of MSP 40 can
be implemented in software and carried out by a processor
or other element of the host system, or by a suitable memory
controller. In some implementations, a single MSP 40 may
be connected to multiple memory devices 24. In yet another
embodiment, some or all of the MSP functionality may be
carried out by a separate unit, referred to as a memory
extension, which acts as a slave of memory device 24.

Memory cells 32 of array 28 are typically arranged in a
grid having multiple rows and columns, commonly referred
to as word lines and bit lines, respectively. The array is
typically divided into multiple pages, i.e., groups of memory
cells that are programmed and read simultaneously. In some
embodiments, each page comprises an entire row of the
array. In alternative embodiments, each row (word line) can
be divided into two or more pages (e.g., one page stored in
the even-order cells of the word line and another page stored
in the odd-order cells of the word line). Cells are typically
erased in groups of word lines that are referred to as erasure
blocks.

Data Storage in Multi-Bit Analog Memory Cells

In an N bits/cell memory, data is typically stored by
programming each memory cell to one of 2.sup.N pre-
defined programming levels, with each level representing a
possible combination of values of the N bits. For example,
a four-level (2 bits/cell) memory may use four programming
levels that represent {11}, {01}, {00} and {10} bit values,
such as the levels shown in the following table:
TABLE-US-00001 Programming Bit values Nominal
threshold level MSB LSB voltage (V) LO11-111011
2003103105

One of the two bits of each cell is referred to as a Least
Significant Bit (LSB) and the other bit is referred to as a
Most Significant Bit (MSB). (Terms such as LSB and MSB
are used merely as a way to refer to specific bits of the
multi-bit memory cells, and do not imply that certain bits are
more significant or important than others. Alternatively, any
other suitable terminology can be used for referring to the
individual bits stored in the cells.) Similar schemes can be
defined for other types of multi-bit cells storing higher
numbers of bits, such as eight-level cells storing 3 bits/cell
or sixteen-level cells storing 4 bits/cell.

In some system configurations, the memory cells along a
given word line (row) of the array store multiple memory
pages. In a typical implementation, different bits are mapped
to different pages. For example, in a given word line of a 2
bits/cell memory, a certain memory page may be stored in
the LSBs of the cells and another page may be stored in the
MSBs. In the description that follows, such pages are
referred to as LSB pages and MSB pages for brevity.
Similarly, in a 3 bits/cell device, the cells along a given word
line may store three memory pages, referred to as an LSB
page, a Central Significance Bit (CSB) page and an MSB

page.
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As can be appreciated, writing the MSB of a certain
memory cell depends on the value of the LSB that was
already written to the cell. Consider, for example, the table
above. In order to program the MSB to “0”, the cell is to be
programmed to level L1 if the LSB is “1”, and to level L2
if the LSB is “0”. In many practical scenarios, however, the
previously-written data may not be available when program-
ming subsequent pages. For example, the MSB page of a
given word line may be written weeks, months or even years
after the LSB page of this word line was written.

Therefore, in many system configurations, programming
a second (or higher) page is performed by:

Reading the storage values from the memory cells.

Reconstructing the current programming levels of the
cells (i.e., reconstructing the data of the previously-written
page or pages), such as by comparing the read storage values
to one or more read thresholds. The reconstructed data is
cached in page buffers 38.

Computing new programming levels for the cells based
on the new data page to be written and on the reconstructed
data cached in the page buffers.

Programming the memory cells to assume the new pro-
gramming levels.

As noted above, writing a second (or higher) page to a
group of multi-bit memory cells often comprises determin-
ing the current programming levels of the cells (i.e., recon-
structing the data of previously-written pages). In many
practical cases, however, the storage values read from the
cells are distorted due to various distortion mechanisms,
such as cross-coupling interference from neighboring cells,
voltage drift due to aging, disturb noise from operations
performed on other cells, and many others. Because of these
distortion effects, reconstruction of the previously-written
data has a certain error probability, i.e., a probability of
erroneously determining the programming levels of the cells
from the read storage values. When data reconstruction of
the previously-written data of a given cell is erroneous, the
programming of new data to the cell is likely to be errone-
ous, as well.

Discontinuous Programming of Multi-Bit Analog Memory
Cells

The severity of distortion effects often depends on the
time that passed since the cells were programmed. For
example, storage values may drift over time due to charge
loss. Neighboring memory cells may be programmed after
the interfered cells and cause additional interference. Dis-
turb noise may also accumulate over time due to operations
applied to other cells in the array. Therefore, the probability
of erroneous reconstruction of previously-written pages
often increases with the time difference between the pro-
gramming of these previous pages and the programming of
the new page.

In view of this dependence, embodiments of the present
invention provide improved methods and systems for stor-
ing data in multi-bit analog memory cells. As will be
explained below, MSP 40 of system 20 identifies scenarios
in which different bits of a given group of multi-bit cells are
programmed (or expected to be programmed) at large time
differences. These scenarios are referred to herein as Dis-
continuous Programming (DP) scenarios. When the MSP
detects a DP scenario that is expected to cause potential
errors, it selects an appropriate storage strategy in order to
reduce or prevent these errors.

The term “storage strategy” refers to any action, process,
parameter value or decision logic that applies to the pro-
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gramming and/or retrieval of data in the analog memory
cells. Several exemplary storage strategies are described
below.

In some embodiments, the MSP selects the strategy by
modifying certain programming parameters that are used for
programming the cells, so as to reduce the error probability
caused by the large time gap between programming of the
different bits. Various programming parameters can be
modified by the MSP in order to improve performance in a
given DP scenario. For example, when the cells are pro-
grammed using a Program and Verify (P&V) process, as is
known in the art, the MSP may modify the programming
step size (i.e., the difference between the magnitudes of
successive programming pulses) used for programming the
cells. Reducing the P&V programming step size improves
programming accuracy (and therefore improves resilience to
distortion) at the expense of higher programming time, and
vice versa. Thus, if a DP scenario is detected, the MSP may
program the current and/or new page with a reduced P&V
step size in order to account for the potentially-higher error
probability. Additionally or alternatively, other suitable
P&V parameters can also be modified.

As another example, when the stored data is encoded with
an Error Correcting Code (ECC), the MSP may increase the
amount of redundancy (e.g., increase the ECC code rate) in
response to detecting a DP scenario. As yet another example,
the MSP may increase the voltage separation between adja-
cent programming levels to reduce the error probability.
Further additionally or alternatively, any other suitable pro-
gramming parameter can be modified.

Typically, programming parameters that reduce the error
probability cause some kind of performance degradation
(e.g., increase the programming time, reduce the storage
capacity of the cells or extend the voltage window). This
performance degradation is usually tolerable, since DP sce-
narios are relatively rare.

FIG. 2 is a flow chart that schematically illustrates a
method for storing data in array 28 of multi-level memory
cells 32, in accordance with an embodiment of the present
invention. The present example addresses a configuration in
which cells 32 comprise N bits/cell MLC, with each bit
corresponding to a different page. Thus, a group of memory
cells along a certain word line stores up to N memory pages,
which can be written together or separately at any given
time.

The method begins with MSP 40 accepting data for
storage in the first M pages mapped to the cell group (M<N),
at a first input step 60. As explained above, the first M pages
are to be written to the M least significant bits of the cells.
The MSP, using R/W unit 36 of memory device 24, writes
the first M pages to the memory cells, at a first programming
step 64. The MSP instructs (or otherwise causes) the R/'W
unit to program the M least significant bits of the cells using
a certain default P&V step size.

At a later time, the MSP accepts additional data for
storage in one or more of the remaining N-M pages of the
same group of memory cells, at a second input step 68. The
MSP determines the time that elapsed since programming of
the first M pages (M least significant bits of the cells), at a
time gap measurement step 72. The MSP checks whether the
time gap is sufficiently long to be regarded as a Discontinu-
ous Programming (DP) scenario, at a gap checking step 76.
For example, the MSP may compare the time gap to a
predetermined threshold.

If the time gap is considered tolerable, i.e., sufficiently
short, the MSP programs the remaining pages using certain
default storage strategy (in the present example, using
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default programming parameters), at a continuous program-
ming step 80. If, on the other hand, the time gap is regarded
as a DP scenario (i.e., if an excessively long time passed
since the first M pages were programmed), the MSP pro-
grams the later-arriving pages using a modified storage
strategy (in this example, using modified programming
parameters) designed to reduce the expected error probabil-
ity, at a discontinuous programming step 84. For example,
the MSP may control the R/W unit to apply a smaller P&V
step size and/or apply higher ECC redundancy, in compari-
son with the default parameter values.

In the description above, the MSP detects a DP situation
when programming the cells, and uses a modified strategy
for programming the later-arriving (higher) pages. This
scheme, however, was chosen purely by way of example. In
general, the MSP may detect and act upon DP scenarios (or
expected DP scenarios) when writing the earlier-arriving
pages, when writing the later-arriving pages, and/or when
retrieving the data from the memory cells.

In some embodiments, the MSP detects DP scenarios
when programming (or intending to program) the M early-
arriving pages written to the cells. For example, the MSP
may accept a certain data item (e.g., a file) for storage, and
determine that storing the data item will not fully program
the group of cells in question. In other words, the MSP may
conclude that after storing the data item in the first M bits of
the cells, one or more pages (bits) of the group of cells will
remain non-programmed. Since it is usually unknown when
the remaining pages will be written, the MSP infers that the
time gap is expected to be large, and therefore regards this
situation as a potential DP scenario. In order to reduce the
error probability that may be caused by the potential DP
scenario, the MSP may program one or more of the M
early-arriving pages using modified programming param-
eters (e.g., using a small P&V step size or high ECC
redundancy).

Additionally or alternatively, the MSP may detect DP
scenarios when programming (or intending to program) the
later-arriving pages, a certain period of time after program-
ming of the early-arriving pages. For example, the MSP may
detect that a certain page is about to be programmed to a
group of cells that were already partially-programmed a long
time ago. In some embodiments, the MSP may maintain a
list of the last X pages that were programmed during the past
T seconds. Using this list, the MSP can determine whether
a page that is about to be programmed is written to a group
of cells that was partially-programmed more than T seconds
ago. In some embodiments, if the MSP power supply is
turned off temporarily, when power returns the MSP empties
the list and regards all pages as potential DP scenarios. In
some applications (e.g., in digital cameras), the power
supply is typically turned on for only short periods of time.
In such applications, the MSP typically applies a discon-
tinuous programming strategy only if the cells have been
partially programmed before power was turned on.

Upon detecting a possible DP scenario when program-
ming a later-arriving page, the MSP may apply various
storage strategies to reduce the high error probability that
may be caused by this scenario.

For example, the MSP may improve the reliability of the
data that was previously stored in the first M least significant
bits of the cells. In some embodiments, the MSP improves
the reliability of this data before computing the new pro-
gramming levels by:
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Reading the M initially-programmed pages (i.e., reading
the storage values stored in the first M least significant bits
of the cells), and caching the read data bits in page buffers
38 of the memory device.

Applying ECC decoding to the cached data.

Writing the data, after error correction, back into page
buffers 38 of the memory device.

Using this process, the new programming levels will be
computed based on error-corrected data, and the probability
of error is therefore considerably reduced. In some system
configurations, the MSP writes only the bits that were
corrected by the ECC decoding process back into the page
buffers, in order to reduce the data traffic between the MSP
and the memory device, and thus reduce the programming
time. This technique is particularly suitable for memory
devices that support partial (selective) external program-
ming of the page buffers.

In alternative embodiments, such as when the memory
device does not support partial programming of the page
buffers, the MSP may improve the reliability of the M
previously-stored pages by applying the following strategy:

Reading the M initially-programmed pages, and caching
the read data bits in page buffers 38.

Applying ECC decoding to the cached data, possibly in
parallel to programming of the later-arriving pages.

Re-reading the first M pages from the cells after program-
ming of the later-arriving pages is completed.

Comparing the re-read pages to the results of the ECC-
corrected data.

Taking recovery measures if detecting large discrepancies
between the ECC-corrected data and the re-read data.
Recovery measures may comprise, for example, copying
some or all of the M pages to another block, re-programming
some or all of the M pages or increasing ECC redundancy
in these pages.

In accordance with another possible strategy, the MSP
may improve the reliability of the first M pages by further
optimizing read parameters that will be used for reading
these pages. For example, the MSP may adjust the read
thresholds used for reading the storage values from the
pages. Additionally or alternatively, the MSP may modify
parameters such as the read bias voltage.

Additionally or alternatively, when the MSP detects a
possible DP scenario when programming the later-arriving
page or pages, it may reduce the potentially-high error
probability by moditying the programming parameters used
for programming the later-arriving page or pages. The MSP
may modify any of the programming parameters described
above, such as reducing the P&V programming step size,
increasing the ECC redundancy or increasing the separation
between programming levels.

In some embodiments, the MSP detects and acts upon DP
scenarios when reading the cells. In other words, the storage
strategy may apply to reading the cells. For example, the
MSP may identify a possible DP scenario by detecting that
the first page of a retrieved data item is not read from the
LSBs of the cells, but from a higher-significance page. In
such a situation, the low-significance pages stored in the
cells are likely to belong to another data item, which may
have been stored a long time before the presently-retrieved
data item was stored.

In alternative embodiments, the MSP may store indica-
tions of possible DP scenarios when programming the cells,
and act upon the stored indications when reading the cells.
Any of the methods for identifying possible DP scenarios
explained above can be used for this purpose. The DP
indication of a given page may comprise a Boolean flag that
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indicates whether or not DP is suspected with respect to this
page. The Boolean flags may be stored in one or more of
cells 32. Alternatively, any other suitable technique can be
used.

The MSP may select and apply various strategies in
response to a suspected DP scenario when reading the cells.
For example, the MSP may invoke a reading process having
higher performance in comparison with the default reading
process used for reading the cells. The higher-performance
reading process may comprise, for example, computing soft
metrics for decoding the ECC of these pages, estimating and
canceling cross-coupling interference or other distortion in
the pages, adjusting the read thresholds used for reading the
pages, or any other suitable technique. Some of these
processes involve re-reading the pages in question multiple
times and combining the read results.

Techniques of this sort are described, for example, in PCT
Application WO 2007/132453, entitled “Distortion Estima-
tion and Cancellation in Memory Devices,” filed May 10,
2007, PCT Application PCT/IL2007/001059, entitled “Esti-
mation of Non-Linear Distortion in Memory Devices,” filed
Aug. 27, 2007, PCT Application WO 2007/132457, entitled
“Combined Distortion Estimation and Error Correction
Coding for Memory Devices,” filed May 10, 2007, and U.S.
patent application Ser. No. 11/995,814, entitled “Reading
Memory Cells using Multiple Thresholds,” filed Jan. 15,
2008, whose disclosures are incorporated herein by refer-
ence. An example method in which the MSP adjusts the read
thresholds based on detected errors is described in FIG. 6
further below.

Programming MLC Bits Using Cached Previously-Pro-
grammed Bits

As explained above, the process of programming higher-
significance bits of multi-bit memory cells by reading and
reconstructing the data stored in lower-significance bits
inevitably involves some error probability, which may cause
programming errors. Although this effect may be more
severe when programming is discontinuous (when long time
intervals separate the programming of different bits), it
exists to some degree regardless of the time that elapsed
between programming of different bits.

Some embodiments of the present invention provide
improved methods and systems for programming multi-bit
memory cells. In accordance with these methods and sys-
tems, data pages that are written to a group of multi-bit
analog memory cells are cached in digital memory for later
use. When programming the higher-significance bits of the
cell group, the new programming levels are computed based
on the newly-arriving data that is intended for storage in the
higher-significance bits and on the cached data of the
lower-significance bits. Since these techniques do not read
and reconstruct the lower-significance bits from the storage
values stored in the analog memory cells, but rather use the
digitally-cached data, they are not sensitive to read errors.
These techniques usually increase programming speed,
since reading the digitally-cached data is generally faster
than reading the analog memory cells.

FIG. 3 is a block diagram that schematically illustrates a
memory system, which comprises a memory device 90 that
is controlled by a memory controller 94, in accordance with
an alternative embodiment of the present invention. Memory
device 90 comprises an array 98 of multi-bit (multi-level)
analog memory cells 102, similar to array 28 of memory
cells 32 in FIG. 1 above. Memory device 90 comprises a
R/W unit 106, which is similar to R/W unit 36 of FIG. 1.
Additionally, R/W unit 106 carries out various control
functions that are described below. Thus, R/W unit 106 can
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be viewed as control circuitry of the memory device. The
functionality of memory controller 94 may be carried out by
any suitable processor, such as by an MSP or by a processor
of the host system.

In some embodiments, MSP 40 in FIG. 1 and memory
controller 94 in FIG. 3 comprise general-purpose processors,
which are programmed in software to carry out the functions
described herein. The software may be downloaded to the
processors in electronic form, over a network, for example,
or it may, alternatively or additionally, be provided and/or
stored on tangible media, such as magnetic, optical, or
electronic memory. Alternatively, some or all functions of
MSP 40 and/or of controller 94 may be implemented in
hardware of firmware.

Data that is written to array 98 is cached in three types of
page buffers, namely a new page buffer 110, a previous page
buffer 114 and an old data buffer 118. Each of buffers 110,
114 and 118 may store the data of one or more memory
pages. Unlike analog memory cells 102, the page buffers
(buffers 110, 114 and 118) comprise digital memory cells. In
the context of the present patent application and in the
claims, terms such as “digital memory” and “digital memory
cell” refer to any type of memory that stores data by
assuming a set of discrete states rather than a continuous
range of analog values. Digital memory cells may comprise,
for example, Static Random Access Memory (SRAM) cells,
flip-flops or any other suitable type of digital cells. The
digital memory cells typically comprise volatile memory.

New page buffer 110 holds the data of a memory page that
is currently intended for writing to a given group of cells
102. The data stored in buffer 110 is typically provided by
memory controller 94. Previous page buffer 114 holds the
data of one or more pages that were previously written to the
same group of cells into which the page stored in buffer 110
is to be written. Old data buffer 118 stores the data of various
pages that were written in the past in array 98. R/W unit 106
may copy the data stored in the new page buffer to the
previous page buffer and/or to the old data buffer.

Typically although not necessarily, array 98 of analog
memory cells 102, digital page buffers 110, 114 and 118, and
R/W unit 106 are packaged in a single device package.

In a typical flow, memory controller 94 requests memory
device 90 (e.g., using the well-known NAND interface) to
store a certain memory page in array 98. If the page is
intended for storage in a group of memory cells whose
lower-significant bits are already programmed, the R/W unit
calculates the new programming levels of these cells based
on (1) the data of the new page received from the memory
controller and (2) the data of the pages that were previously-
stored in the group of cells and cached in buffers 114 or 118.
In some embodiments, the R/W unit computes the new
programming levels based on the data cached in previous
page buffer 114. If necessary, the R/W unit copies the
appropriate page or pages from old data buffer 118 to buffer
114 before performing the computation.

As can be appreciated, caching all or even most of the
pages in buffer 118 is usually not feasible. In a typical
implementation, only a small fraction of the data of the
pages stored in array 98 can be cached in buffer 118. In some
embodiments, the memory controller selects which pages
are to be cached in old data buffer 118 in accordance with
certain predefined criteria. For example, the controller may
cache pages whose distortion level is high, pages whose data
is particularly sensitive, pages whose desired retention time
is high, or pages that meet any other suitable criterion.

Pages that do not meet the predefined criteria are not
cached in the old data buffer. When programming a given
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page, if the previous pages written to the same cell group are
not available in buffer 118, they are read from array 98 in
spite of the possibility of read errors. In some embodiments,
some or all of the pages that are not cached in buffer 118 can
be error-corrected by the memory controller, so as to reduce
the likelihood of read errors. In such configurations, memory
controller 94 is able to read and/or modify the data cached
in previous page buffer 114. Using this functionality, the
memory controller may process the data cached in buffer
114, such as apply error detection and/or correction to the
cached data. If the memory controller modifies the data (e.g.,
corrects errors), it may store the modified data directly in
buffer 114 without first caching it in buffer 110.

In some embodiments, device 90 further comprises an
error detection unit 122, which is able to detect errors in the
data that is cached in previous page buffer 114. For example,
each page may be encoded with Cyclic Redundancy Check
(CRC) bits, checksum bits or any other suitable type of Error
Detection Code (EDC). Unit 122 decodes the EDC so as to
identify the presence of errors in the data. In some embodi-
ments, when the data is encoded with an ECC, unit 122 may
comprise a reduced-complexity ECC decoder that is able to
detect the presence of errors but not correct them. In such
cases, the ECC is regarded as a type of error detection code.

In a possible flow, when writing a new page to a given
group of cells, the R/W unit first checks whether the
previous pages written to this cell group are available in
buffer 118. If available, the R/W unit copies the previous
pages to buffer 114 and computes the new programming
levels based on the data of the new page cached in buffer 110
and on the data of the previous pages cached in buffer 114.
If the data of the previous pages is not available in buffer
118, the R/W unit reads the previous pages from the analog
cells, reconstructs the data of these pages and caches it in
buffer 114. The memory controller retrieves the data cached
in buffer 114, applies error correction and re-writes the
error-corrected data to the buffer. Then, the R/W unit com-
putes the new programming levels based on the new data in
buffer 110 and on the error-corrected data of previous pages
cached in buffer 114. This process considerably reduces the
probability of error in computing the new programming
levels.

The memory device configuration shown in FIG. 3 is an
exemplary configuration, which is shown purely for the sake
of conceptual clarity. In alternative embodiments, any other
memory device configuration that allows (1) caching of
previously-stored pages in digital memory and (2) use of
cached pages in programming subsequent pages can also be
used.

Since the process described above considerably reduces
the probability of programming errors, the R/W may pro-
gram the low-significance pages of the cells less accurately
(e.g., using a large P&V step size) in comparison with
conventional methods that read the previous pages from the
cells. The use of large P&V step size increases the program-
ming speed considerably.

For example, consider a group of 3 bits/cell memory cells,
in which three data pages (LSB, CSB and MSB pages) can
be stored. If the data of the LSB and CSB pages is cached
in digital memory, then a larger error probability can be
tolerated for these pages, since subsequent programming of
the MSB page will be carried out using the cached data
without reading the cells. Thus, the LSB and CSB pages can
be programmed rapidly using a large P&V step size. In some
embodiments, the LSB and MSB pages can be programmed
so that the threshold voltage distributions of adjacent pro-
gramming levels overlap one another. This is in contrast to
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conventional configurations, in which a certain voltage
margin is maintained between adjacent programming levels.

FIG. 4 is a graph showing threshold voltage distributions
in a group of multi-level memory cells, in accordance with
an embodiment of the present invention. FIG. 4 shows an
exemplary scenario, in which the first two pages have been
programmed into a group of 3 bits/cell memory cells with
reduced accuracy (large P&V step size), as in the above
example. The figure shows four threshold voltage distribu-
tions 130A . . . 130D, corresponding to four programming
levels that store the L.SB and CSB pages. As can be seen in
the figure, the voltage distributions are relatively wide
because of the large P&V step size, and adjacent program-
ming levels overlap one another.

FIG. 5 is a flow chart that schematically illustrates a
method for storing data in array 98 of N bits/cell analog
memory cells 102, in accordance with another embodiment
of the present invention. In this embodiment, the cells along
each word line store N pages, and there is no distinction
between odd-order and even-order bit lines. However, the
method of FIG. 5 can be generalized to odd/even configu-
rations in a straightforward manner.

The method begins with memory controller 94 accepting
a data item (e.g., a file) for storage in array 98 at an input step
140. The memory controller concludes that the data item
will occupy all N pages of a given word line. The memory
controller typically determines the number of bits to be
programmed to each cell based on the total number of pages
to be stored, in accordance with the mapping of pages to
word lines that is used in the particular memory device.

The memory controller may determine the total number of
pages using various means. For example, in some embodi-
ments the memory controller carries out the file system
functionality that specifies the required size. In other
embodiments, the memory controller may carry out a Logi-
cal Block Addressing (LBA) or Block Abstracted (BA)
interface, as is known in the art, in which the host system
issues a program command with a large number of sectors,
ending up with a large number of pages. As another
example, the host system may issue to the memory control-
ler a dedicated command or signal indicating the start and
size of the data item. As yet another example, the memory
controller may support a dedicated programming command
for programming multiple pages.

Upon determining that the data item will occupy all N
pages, the memory controller (using R/w unit 106) programs
the first N-1 pages rapidly using a large P&V step size, at
a first programming step 144. The memory device caches the
data of the first N-1 pages in buffer 114, as explained above.
The memory controller (using R/W unit 106) then programs
the N.sup.th page using a P&V step size that is smaller than
the step size used for programming the first N-1 pages, at a
second programming step 148. In order to program the
N.sup.th page, unit 106 computes the new programming
levels of the cells using the data of the N.sup.th page (cached
in buffer 110) and of the data of the first N-1 pages (cached
in buffer 114).

Typically, the memory controller acknowledges to the
host system that the programming is completed only after all
N pages have been programmed successfully. In some
embodiments, the memory controller may use modified
programming parameters (e.g., higher ECC redundancy, as
described in FIG. 2 above) when programming the first N-1
pages, in order to compensate for the possibly-higher error
probability that may be caused by the larger P&V step size.

The description above referred to a programming opera-
tion that programs all N pages of a given word line.
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However, the method of FIG. 5 can be used in any scenario
in which the memory controller identifies that a program-
ming task would program M pages out of the N possible
pages, M.ltoreq.N. Upon identifying such a scenario, the
memory controller programs the first M-1 pages rapidly
with a large P&V step size, and the M.sup.th page with a
smaller step size, using the cached data of the previous
pages.

Reliable Programming Using Read Threshold Adjustment

As explained above, in many data storage schemes,
programming a second or higher page in a group of cells
typically involves reading and reconstructing the data of the
previously-written page or pages, and then computing new
programming levels for the cells based on the data of the
new page and on the reconstructed data of the previous
pages. In these schemes, read errors in reading the previ-
ously-written page or pages may lead to errors in program-
ming the new page.

In some embodiments, the MSP reduces the probability of
read errors in reading the previously-written pages by
adjusting the read thresholds that are used by the memory
device to read these pages. In many cases, the MSP is in a
better position than the memory device to carry out this
adjustment, since it can apply various signal processing
techniques (e.g., error detection and correction) for deter-
mining the optimal read threshold values.

FIG. 6 is a flow chart that schematically illustrates a
method for storing data in an array of analog memory cells,
in accordance with another embodiment of the present
invention. The present example refers to programming of an
LSB page and an MSB page in a group of 2 bits/cell analog
memory cells. The method can be used, however, with
multi-level memory cells storing any desired number of bits.

The method begins with the MSP accepting a request to
program the MSB page of a group of cells, at a programming
request step 150. The data to be programmed in the MSB
page is provided in or with the request. The LSB page of the
group of cells in question is assumed to be already pro-
grammed. In response to the request, the MSP instructs the
memory device to read the L.SB page. The memory device
reads the LSB page using a default set of read thresholds, at
an LSB reading step 154. The memory device sends the data
read from the LSB page to the MSP.

The MSP checks whether the read LSB data contains
errors, at an error checking step 158. The MSP may apply
any suitable error detection or correction technique for this
purpose. If the MSP does not find errors in the read LSB
data, it instructs the memory device to proceed and program
the MBS page. The memory device programs the MSB page,
at an MSB programming step 162. The memory device
computes the programming levels for programming the cells
based on (1) the MSB data provided at step 150 above, and
(2) the LSB data read at step 154 above.

If, on the other hand, the MSP finds that the L.SB data read
at step 154 does contain errors, the MSP adjusts the read
thresholds used for reading the LSB page, at a threshold
adjustment step 166. The MSP may use any suitable tech-
nique for adjusting the L.SB read thresholds based on the
detected errors. For example, for each corrected error event,
the MSP may determine the programming level that was
initially programmed and the (different) programming level
that was actually decoded. The MSP may compute the
threshold adjustments based on the intended and actual
programming levels. Generally, however, the MSP may
adjust the read thresholds based on both corrected and
uncorrected errors.
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The MSP provides the adjusted L.SB read thresholds to the
memory device. The memory device re-reads the LSB page
using the adjusted read thresholds, at an LSB re-reading step
170. The re-read operation is typically internal to the
memory device, and the memory device does not report the
re-read results to the MSP. Because of the optimized thresh-
old values, the L.SB data read at step 170 will typically have
no errors, or at least fewer errors in comparison with the data
read at step 154.

Having now obtained error-reduced [LSB data, the
memory device programs the MSB page using the re-read
LSB data (re-read at step 170) and the MSB data (accepted
at step 150), at MSB programming step 162. Since the
re-read LSB data was read using the adjusted threshold and
has little or no errors, the MSB programming has a reduced
number of errors, as well.

In some embodiments, the memory device uses different
sets of read thresholds for different scenarios of programmed
and non-programmed pages. For example, the memory
device may use a certain set of read thresholds when only the
LSB page is programmed, and another set of thresholds
when both LSB and MSB pages are programmed. Typically,
the MSP is capable of setting the different sets of read
thresholds used by the memory device. The MSP is typically
able to set the read thresholds for both external read opera-
tions (in which the memory device reports the read data to
the MSP) and internal read operations (in which the read
data is used only internally to the memory device and are not
reported to the MSP).

In some embodiments, the MSP may re-read the LSB
page and re-adjust the read thresholds iteratively, e.g., until
converging to satisfactory error performance.

The method of FIG. 6 can be generalized in a straight-
forward manner to memory cells storing any desired number
of bits. At each stage, the MSP adjusts the read thresholds of
the lowest M pages, and then programs the (M+1).sup.th
page using the error-reduced data read from the previous M
pages.

The additional re-read operations carried out in the
method of FIG. 6 may reduce the programming speed of the
system. However, when the different pages of the group of
cells are programmed substantially at the same time (e.g.,
sequentially), the MSP can avoid the extra re-read opera-
tions, since the storage values of the cells are not likely to
drift considerably between the programming of the pages.
Therefore, on average, the number of extra re-read opera-
tions is relatively rare, and the programming speed of the
system will not be degraded significantly. Thus, in some
embodiments, the MSP reverts to the method of FIG. 6 upon
detecting a Discontinuous Programming (DP) scenario.

In some embodiments, the MSP reads the previously-
programmed pages from a group of cells before program-
ming an additional page, in order to backup these pages
against power failure or unexpected reset that may occur
during the programming of the additional page. This sort of
backup is especially important when the pages are not
written sequentially to the cell group. These scenarios are
also the typical scenarios in which the MSP re-reads the
previously-programmed pages as part of the method of FIG.
6. Therefore, the extra re-read operations cause little or no
degradation in programming speed.

The description of FIG. 6 above referred to adjusting the
LSB read thresholds based on detected errors. In alternative
embodiments, however, the MSP may apply various other
signal processing methods to the LLSB read results in order
to adjust the read thresholds. Any suitable process can be
used for this purpose. For example, PCT Application PCT/
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1L.2008/000329, entitled “Adaptive Estimation of Memory
Cell Read Thresholds,” filed Mar. 11, 2008, whose disclo-
sure is incorporated herein by reference, describes several
threshold adjustment methods in which the MSP estimates
the Cumulative Distribution Function (CDF) of the storage
values of the memory cells, and adjusts the read thresholds
based on the estimated CDF.

In a typical flow, the memory device reads the LSB page
using a certain set of read thresholds and sends the read
results to the MSP. The MSP adjusts the read thresholds
based on the read results, and updates the memory device
with the adjusted threshold values. The memory device then
re-reads the LSB page using the adjusted thresholds, and
then computes the programming levels for programming the
MSB page based on the re-read L.SB data and the data to be
programmed in the MSB page.

In some embodiments, the MSP can adjust the read
thresholds using only part of the L.SB read results. In these
embodiments, the memory device may initially read only
part of the LSB page (or transfer only part of the LSB read
results to the MSP), thus reducing the degradation in pro-
gramming speed.

Although the embodiments described herein mainly
address data storage and retrieval in solid-state memory
devices, the principles of the present invention can also be
used for storing and retrieving data in Hard Disk Drives
(HDD) and other data storage media and devices.

It will thus be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed in the prior art.

The invention claimed is:

1. A method, comprising:

receiving a first plurality of data bits to store in a memory
device, wherein the memory device includes a first
plurality of memory cells and a second plurality of
memory cells;

storing the first plurality of data bits in a respective subset
of the first plurality of memory cells, wherein storing
the first plurality of data bits includes programming the
respective subset of the first plurality of memory cells
dependent upon a respective set of first programming
levels;

evaluating a criterion of the received first plurality of data
bits, wherein the criterion includes cross-coupling
interference from one or more memory cells neighbor-
ing the first plurality of memory cells;

storing the first plurality of data bits in the second
plurality of memory cells in response to determining
that the first plurality of data bits meet the evaluated
criterion;

receiving a second plurality of data bits to store in the
memory device;

determining a respective set of second programming
levels dependent upon the received second plurality of
data bits and an elapsed time since the storing in the
first plurality of data bits; and

storing the second plurality of data bits in the respective
subset of the first plurality of memory cells, wherein
storing the second plurality of data bits includes pro-
gramming the respective subset of the first plurality of
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memory cells dependent upon the respective set of
second programming levels.

2. The method of claim 1, wherein each memory cell of
the first plurality of memory cells comprises a non-volatile
memory cell.

3. The method of claim 1, wherein determining the
respective set of second programming levels comprises
retrieving the stored first plurality of data bits responsive to
a determination that the first plurality of data bits are stored
in the respective subset of the first plurality of memory cells.

4. The method of claim 3, wherein retrieving the stored
first plurality of data bits comprises storing the retrieved first
plurality of data bits in a buffer.

5. The method of claim 1, wherein the evaluated criterion
further includes a distortion level of the first plurality of data
bits.

6. The method of claim 3, wherein determining the
respective set of second programming levels comprises
detecting and correction errors in the retrieved first plurality
of data bits.

7. The method of claim 1, wherein storing the first
plurality of data bits comprises applying to the respective
subset of the first plurality of memory cells a first sequence
of programming pulses, wherein the first sequence of pro-
gramming pulses are incrementally increased by a first step
size, and wherein storing the second plurality of data bits
comprises applying to the respective subset of the second
plurality of memory cells a second sequence of program-
ming pulses, wherein the second sequence of programming
pulses are incrementally increased by a second step size,
wherein the second step size is less than the first step size.

8. An apparatus, comprising:

a first plurality of memory cells;

a second plurality of memory cells; and

a control circuit coupled to the first plurality of memory

cells and the second plurality of memory cells, wherein

the control circuit is configured to:

receive a first plurality of data bits;

store the first plurality of data bits in a respective subset
of'the first plurality of memory cells dependent upon
a respective set of first programming levels;

evaluate a criterion of the received first plurality of data
bits;

store the first plurality of data bits in a respective subset
of the second plurality of memory cells in response
to a determination that the first plurality of data bits
meet the evaluated criterion;

receive a second plurality of data bits;

determine a respective set of second programming
levels dependent upon the received second plurality
of data bits; and

store the second plurality of data bits in the respective
subset of the first plurality of memory cells depen-
dent upon the respective set of second programming
levels.

9. The apparatus of claim 8, wherein each memory cell of
the first plurality of memory cells comprises a non-volatile
memory cell.

10. The apparatus of claim 8, wherein to determine the
respective set of second programming levels the control
circuit is further configured to retrieve the stored first
plurality of data bits responsive to a determination that the
first plurality of data bits are stored in the respective subset
of the first plurality of memory cells.
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11. The apparatus of claim 10, wherein to retrieve the
stored first plurality of data bits the control circuit is further
configured to store the retrieved first plurality of data bits in
a buffer.
12. The apparatus of claim 8, wherein to determine the
respective set of second programming levels the control
circuit is further configured to detect and correct errors in the
retrieved first plurality of data bits.
13. The apparatus of claim 8, wherein to store the first
plurality of data bits the control circuit is further configured
to apply to the respective subset of the first plurality of
memory cells a first sequence of programming pulses,
wherein the first sequence of programming pulses are incre-
mentally increased by a first step size, and wherein to store
the second plurality of data bits the control circuit is further
configured to apply to the respective subset of the second
plurality of memory cells a second sequence of program-
ming pulses, wherein the second sequence of programming
pulses are incrementally increased by a second step size,
wherein the second step size is less than the first step size.
14. The apparatus of claim 8, wherein each cell of the
second plurality of memory cells comprises a static random
access memory cell.
15. A system, comprising:
a memory device, wherein the memory device includes a
first plurality of memory cells and a second plurality of
memory cells; and
a memory controller coupled to the memory device,
wherein the memory controller is configured to:
receive a first plurality of data bits;
store the first plurality of data bits in a respective subset
of the first plurality of memory cells dependent upon
a respective set of first programming levels;

evaluate a criterion of the received first plurality of data
bits;

store the first plurality of data bits in a respective subset
of the second plurality of memory cells in response
to a determination that the first plurality of data bits
meets the evaluated criterion;
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receive a second plurality of data bits;

determine a respective set of second programming
levels dependent upon the received second plurality
of data bits; and

store the second plurality of data bits in the respective
subset of the first plurality of memory cells depen-
dent upon the respective set of second programming
levels.

16. The system of claim 15, wherein each memory cell of
the first plurality of memory cells comprises a non-volatile
memory cell.

17. The system of claim 15, wherein to determine the
respective set of second programming levels the memory
controller is further configured to retrieve the stored first
plurality of data bits responsive to a determination that the
first plurality of data bits are stored in the respective subset
of the first plurality of memory cells.

18. The system of claim 17, wherein to retrieve the stored
first plurality of data bits the memory controller is further
configured to store the retrieved first plurality of data bits in
a buffer.

19. The system of claim 15, wherein to determine the
respective set of second programming levels the memory
controller is further configured to detect and correct errors in
the retrieved first plurality of data bits.

20. The system of claim 15, wherein to store the first
plurality of data bits the memory controller is further con-
figured to apply to the respective subset of the first plurality
of memory cells a first sequence of programming pulses,
wherein the first sequence of programming pulses are incre-
mentally increased by a first step size, and wherein to store
the second plurality of data bits the memory controller is
further configured to apply to the respective subset of the
second plurality of memory cells a second sequence of
programming pulses, wherein the second sequence of pro-
gramming pulses are incrementally increased by a second
step size, wherein the second step size is less than the first
step size.



